Adapted from works by S. Beers and J. Carr and EngageNY | Shift #1 Mathematics: Focus | | | | | | |---|---|----------------|--------------------|------------------|-------------------| | | | | | | Common Core Shift | | Teachers significantly narrow and deepen the scope of how time and energy is spent in the math classroom. They do so in order to | Students are: • Using instructional resources that tie directly to the CCSS. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | ocus deeply on only the concepts that are prioritized in the standards. | Working at a pace that matches their levels of proficiency, not a pacing chart. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | Students develop a strong foundational knowledge and deep conceptual understanding and are able to transfer mathematical skills and understanding across concepts and grades. | | | | | | | Shift #2 Mathematics: | | | | | | |--|--|---|--|--|--| | Coherence | | | | | | | Common Core Shift | Implementation Indicator | Classroom Observation | | | | | Standards are taught and assessed in ways that carefully connect the learning within and across grades so that students build new | Students are: • Building on their prior knowledge and skills (during instruction and assessment). | Not Little Some
Evident Evidence Evident | | | | | understanding onto foundations built in previous years. Teachers use understanding of | Receiving scaffolds to support their learning. | Not Little Some
Evident Evidence Evident | | | | | learning progressions presented
from grade to grade in the CCSS to
monitor students' progress, to
provide scaffolding to support
student learning, and to go deeper
in understanding the concepts,
where appropriate | Going deep in exploring and understanding mathematical concepts. | Not Little Some
Evident Evidence Evident | | | | | Shift #3 Mathematics: | | | | | |---|--|--|--|--| | Fluency | | | | | | Common Core Shift | Implementation Indicator | Classroom Observation | | | | In major topics, students pursue the following three aspects of mathematics with equal intensity: | Students are: □ Pursuing conceptual understanding □ Pursuing procedural skill and fluency | Not Little Some
Evident Evidence Evidence Evident | | | | Conceptual understanding, Procedural skill & fluency, Application | Efficient and accurate in performing foundational, computational procedures without referring to tables and other aids. | Not Little Some
Evident Evidence Evidence Evident | | | | Students engage in authentic, real-life practice of skills and make use of those skills through extended application of concepts. | Applying a variety of appropriate procedures flexibly as they solve problems. | Not Little Some
Evident Evidence Evidence Evident | | | | | Engaging in authentic, real-life practice of skills. | Not Little Some
Evident Evidence Evidence Evident | | | | | Studying algorithms as "general procedures" so they can gain insight to the structure of mathematics (e.g., organization, patterns, predictability). | Not Little Some
Evident Evidence Evident | | | | | Using technology (such as calculators) judiciously in ways that do not conflict with development of fluency. | Not Little Some
Evident Evidence Evidence Evident | | | | Common Core Shift | Implementation Indicator | Classroom Observation | | | | |--|---|-----------------------|--------------------|------------------|---------| | Teachers teach more than "how to get an answer" and instead support students' ability to access | Students are: □ Pursuing conceptual understanding □ Pursuing procedural skill and fluency | Not
Evident | Little
Evidence | Some
Evidence | Evident | | concepts from a number of perspectives so that students are able to see math as more than a set of mnemonics or discrete | Having time to "make sense" of math lessons. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | procedures. Deep conceptual understanding of core content at each grade is | Justifying why a particular math statement is true or where a mathematical rule comes from. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | critical for student success in subsequent years. Students with conceptual understanding know more than isolated facts and | Writing and speaking about their understanding of mathematics content and procedures. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | methods – they understand why a mathematical idea is important and the contexts in which it is useful. | Using precise and accurate mathematics, academic language, terminology, and concrete or abstract representations (e.g., pictures, symbols, expressions, equations, graphics, models). | Not
Evident | Little
Evidence | Some
Evidence | Evident | | | Engaging in extended application of concepts. | Not
Evident | Little
Evidence | Some
Evidence | Evident | | Shift #5 Mathematics: | | | | | | |---|--|---|--|--|--| | Applications (Modeling) | | | | | | | Common Core Shift | Implementation Indicator | Classroom Observation | | | | | Students are expected to use math and choose the appropriate concept for application even when they are not prompted to do so. | Students are: Choosing the appropriate concept or procedure to solve a problem or analyze a situation without being prompted which to use. | Not Little Some
Evident Evidence Evident | | | | | Teachers at all grade levels identify opportunities for students to apply math concepts in "real world" situations. | Practicing and receiving feedback before engaging in independent practice. | Not Little Some
Evident Evidence Evident | | | | | Teachers in content areas outside of math, particularly science, ensure that students are using math – at all grade levels – to | Representing the problem situation and
their solution symbolically, graphically,
and/or pictorially (may include
technological tools) appropriate to the
context of the problem. | Not Little Some
Evident Evidence Evident | | | | | make meaning of and access content. | Identifying variables, computing and
interpreting results, reporting on findings,
and justifying the reasonableness of their
results and procedures within context of
the task. | Not Little Some
Evident Evidence Evident | | | | | Shift #6 Mathematics: Balanced Emphasis (Dual Intensity) | | | | | | |---|--|---|--|--|--| | Common Core Shift | Implementation Indicator | Classroom Observation | | | | | Students need to both practice and understand mathematics. It is more than just a balance between | Students are: • Having time to "make sense" of math lessons. | Not Little Some
Evident Evidence Evident | | | | | these two priorities – both are occurring with intensity. Teachers create opportunities for students to participate in authentic practice and make use of those skills through extended application of math concepts. | Writing and speaking about their understanding of mathematics content and procedures. | Not Little Some
Evident Evidence Evident | | | | | | Engaging in debriefing discussion following exploration of tasks and reflecting on their thinking processes after task completion. | Not Little Some
Evident Evidence Evident | | | | | | Engaging in authentic, real-life practice of skills. | Not Little Some
Evident Evidence Evident | | | |